Zusammenfassung lineare Funktionen

Allgemeine Funktionsgleichung der Geraden.

 $f(x) = a_1x + a_0$ Der Graph einer linearen Funktion ist eine Gerade.

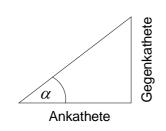
Achsenschnittpunkte:

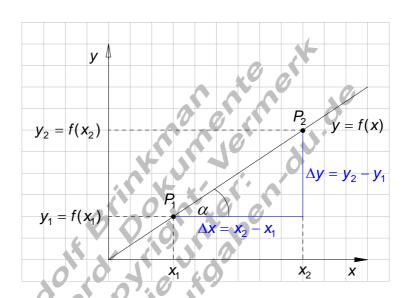
$$y_s = f(0) \Rightarrow P_v(0 \mid y_s)$$

 $f(x) = 0 \Rightarrow P_x(x_s \mid 0)$ mit x_s als Nullstelle

Das Steigungsdreieck

$$Steigung = \frac{Gegenkathete}{Ankathete}$$





Steigung einer Geraden durch die Punkte $P_1(x_1|y_1)$ und $P_2(x_2|y_2)$

$$a_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \tan(\alpha)$$

Funktion aus gegebenen Bedingungen:

Fall I: Eine Gerade mit der Steigung a_1 verläuft durch den Punkt $P_1(x_1 | y_1)$.

Beispiel: Allgemeine Lösung: Steigung: $a_1 = 1.5$ Punkt: $P_1(-2 \mid 3)$ $P_1(x_1 \mid y_1) \Rightarrow f(x_1) = y_1$ $f(x) = a_1x + a_0$ $\Leftrightarrow a_1 \cdot x_1 + a_0 = y_1 | -a_1 \cdot x_1$ Ausgangsgleichung: $f(x) = 1.5 \cdot x + a_0 \Leftrightarrow a_0 = y_1 - a_1 \cdot x_1$ Steigung einsetzen: \Rightarrow f (x) = $a_1 \cdot x + y_1 - a_1 \cdot x_1$ Der Wert für a_0 ist zu berechnen. $= \mathbf{a}_1 \cdot \mathbf{x} - \mathbf{a}_1 \cdot \mathbf{x}_1 + \mathbf{y}_1$ Punktprobe für: $P_1(-2|3)$ $= a_1(x - x_1) + y_1$ $f(-2) = 3 \iff 1,5 \cdot (-2) + a_0 = 3$ $\Leftrightarrow -3 + a_0 = 3 | +3$ \Leftrightarrow = 6 Punkt- Steigungsform:

$$\Rightarrow f(x) = 1,5 \cdot x + 6 \qquad \qquad f(x) = a_1(x - x_1) + y_1$$

Fall II: Zwei Punkte $P_1(x_1 | y_1)$ und $P_2(x_2 | y_2)$ liegen auf einer Geraden.

Beispiel:

$$P_1(-3|-1)$$
 $P_2(4|6)$

Ausgangsgleichung: $f(x) = a_1x + a_0$

$$a_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - (-1)}{4 - (-3)} = \frac{6 + 1}{4 + 3} = \frac{7}{7} = 1$$

Steigung einsetzen: $f(x) = 1 \cdot x + a_0$ und Punktprobe für: $P_2(4 \mid 6)$ oder für P_1

$$P_2\left(4\mid 6\right) \Rightarrow f\left(4\right) = 6 \Leftrightarrow 1\cdot 4 + a_0 = 6\mid -4 \Leftrightarrow a_0 = 2 \Rightarrow f\left(x\right) = x+2$$

Oder die allgemeine Form der Geradengleichung durch zwei Punkte verwenden.

$$f(x) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$$

Sonderfälle für Geradengleichungen:

Parallele zur x- Achse im Abstand a₀:

$$f(x) = a_0$$

Parallele zur y- Achse im Abstand a:

$$x = a$$

Lage zweier Geraden zueinander:

Zwei Geraden f und g können sich schneiden, parallel zueinander oder identisch sein.

Lösungsansatz durch Gleichsetzen der Funktionsgleichungen f(x) = g(x).

Hat f(x) = g(x) genau eine Lösung, dann schneiden sich die Graphen von f und g in einem Punkt. Die Geraden haben unterschiedliche Steigungen.

Hat f(x) = g(x) keine Lösung, dann haben beide Geraden keinen gemeinsamen Punkt. Sie verlaufen parallel zueinander.

Hat f(x) = g(x) unendlich viele Lösungen, dann sind beide Geraden identisch.

Orthogonale Geraden (zwei Geraden stehen senkrecht aufeinander).

Für die Steigung zweier senkrecht aufeinander stehender Geraden g und h

gilt:

$$a_{1g} \cdot a_{1h} = -1$$

$$a_{1g} = -\frac{1}{a_{1h}}$$

oder

$$a_{1h} = -\frac{1}{a_{1g}}$$

