Aufgabenblatt: Das Hookesche Gesetz

\[
\frac{F}{s} = D \quad D = \text{kons tant} \quad F = D \cdot s \quad s = \frac{F}{D}
\]

1. Berechne für die folgenden Messwerte die jeweilige Federkonstante.

<table>
<thead>
<tr>
<th>F</th>
<th>s</th>
<th>Federkonstante: D = \frac{N}{cm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 N</td>
<td>1 cm</td>
<td></td>
</tr>
<tr>
<td>120 N</td>
<td>2 cm</td>
<td></td>
</tr>
<tr>
<td>100 N</td>
<td>1 cm</td>
<td></td>
</tr>
<tr>
<td>200 N</td>
<td>12 cm</td>
<td></td>
</tr>
<tr>
<td>1 kN</td>
<td>1 m</td>
<td></td>
</tr>
<tr>
<td>120 mN</td>
<td>1,2 mm</td>
<td></td>
</tr>
<tr>
<td>2 mN</td>
<td>0,1 mm</td>
<td></td>
</tr>
<tr>
<td>1200 kN</td>
<td>12 dm</td>
<td></td>
</tr>
</tbody>
</table>

2. Eine Feder hat die Federkonstante \(D = 120 \, \text{N/cm} \). Berechne die jeweilige Auslenkung \(s \) der Feder.

<table>
<thead>
<tr>
<th>F</th>
<th>s</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 mN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,7 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 \cdot 10^{-4} , \text{mN}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 \cdot 10^{-3} , \text{N}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2 \cdot 10^2 , \text{mm}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Eine Feder hat die Federkonstante \(D = 150 \, \text{N/cm} \). Berechne die jeweilige Kraft, die zur gemessenen Auslenkung gehört.

<table>
<thead>
<tr>
<th>s</th>
<th>F</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5 \cdot 10^2 , \text{mm}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2 \cdot 10^{-3} , \text{m}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>