Kategorien
Integralrechnung Mathematik

Flächen zwischen Funktionsgraphen

Flächeninhalt zwischen den Graphen zweier Funktionen


Bis jetzt haben wir den Flächeninhalt einfacher Flächen ermittelt, das heißt zwischen einem Graphen und der x-Achse. Manchmal müssen wir den Inhalt einer Fläche berechnen, die zwischen zwei Funktionsgraphen liegt. Dazu berechnet man die Differenz der Flächen zwischen den jeweiligen Funktionen mit der x-Achse. Zuerst stelle ich ein anschauliches Beispiel vor. Danach erkläre ich die Berechnung. Anschließend betrachte ich den Fall, dass eine Funktion unterhalb der x-Achse liegt. Dann beschreibe ich die allgemeine Formel zur Berechnung der Fläche zwischen zwei Funktionen. Die Vorgehensweise dazu erkläre ich anhand eines ausführlichen Beispiels.
Wenn du hier klickst, kommst du zu den Aufgaben.

Beispiel zur Fläche zwischen Funktionsgraphen:

Flächen-zwischen-Funktionsgraphen-Graph1

Wir wollen die Fläche A zwischen zwei Funktionsgraphen ermitteln.

Flächen-zwischen-Funktionsgraphen-Graph2

Dazu brauchen wir  die Fläche zwischen der 1. Funktion und der x-Achse A1.

Flächen-zwischen-Funktionsgraphen-Graph3

Außerdem die Fläche zwischen der 2. Funktion und der x-Achse A2.

Also kann man A wie folg berechnen: A = A1 – A2.

Berechnung der Fläche zwischen Funktionsgraphen:

Flächen-zwischen-Funktionsgraphen-Berechnung

Eine Funktion liegt unterhalb der x-Achse

Wie wir im letzten Beitrag gesehen haben, hängt das Vorzeichen des Ergebnisses einer Flächenberechnung davon ab, ob die Fläche oberhalb oder unterhalb der x-Achse liegt. Wir untersuchen nun, ob das einen Einfluss auf die Berechnung im obigen Beispiel hat. Dafür verschieben wir die Graphen der beiden Funktionen längs der y-Achse um drei Einheiten nach unten und berechnen den Flächeninhalt neu.

Flächen-zwischen-Funktionsgraphen-Graph4Flächen-zwischen-Funktionsgraphen-Graph5
Aus der Anschauung heraus sollte das Ergebnis gleich sein.
Auch die x – Werte der Schnittpunkte und somit die Integrationsgrenzen bleiben unverändert.

Flächen-zwischen-Funktionsgraphen-Berechnung2



Formel zur Berechnung der Fläche zwischen zwei Funktionen

Flächen-zwischen-Funktionsgraphen-FormelFlächen-zwischen-Funktionsgraphen-Graph6

Vorgehensweise zur Berechnung der Flächen zwischen Funktionsgraphen

Dazu stelle ich ein Beispiel zur Verfügung. Zuerst zeichnen wir beide Graphen in ein Koordinatensystem. Die Integrationsgrenzen sind die x-Koordinaten der Schnittpunkte beider Graphen.

b1_1_l

b1_des_l

b1_2_l

Die Fläche zwischen den beiden Graphen beträgt etwa 15,798 FE.

Bemerkung:
Man kann die Rechnung auch ohne Beträge durchführen, wenn man von dem Ergebnis, falls es negativ ist, den Betrag bildet.
Falls f(x) im Integrationsintervall [ a ; b ] oberhalb von g(x) liegt, ist das Ergebnis positiv.
Falls f(x) im Integrationsintervall [ a ; b ] unterhalb von g(x) liegt, ist das Ergebnis negativ.

Nachfolgend zeige ich, wie man obige Rechnung mit einem Taschenrechner mit Speicherfunktionen besitzt durchführt.
Zum Beispiel mit dem  TI- 30 eco RS von Texas Instruments.
Lösen Sie das bestimmte Integral:

b1_3_l
Wir speichern die Integrationsgrenzen a und b im Taschenrechner. Dann berechnen wir den algebraische Ausdruck.

b1_4_l



Aufgaben: Flächen zwischen Funktionsgraphen

Bestimme die Flächen zwischen folgenden Funktionsgraphen.  Zeichne danach beide Graphen in ein Koordinatensystem. Schraffiere schließlich die berechnete Fläche.

1.01

2.02

3.03

4.04

5.05

6.06

7.07

8.08

9.09

10.10


Hier findest du die Lösungen.

Und hier eine Übersicht über weitere Beiträge zum Thema Integralrechnung, darin auch Links zur Theorie und zu weiteren Aufgaben.