Lösungen Exponentialgleichungen V

Lösungen Exponentialgleichungen mit e-Funktionen und Brüchen

1.Lösen Sie die Gleichungen  Ausführliche Lösungen
a)
01a_l
b)
01b_l: Exponentialgleichung, Lösung durch Substitution

2.Lösen Sie die Gleichungen  Ausführliche Lösungen
a)
02a_l
b)
02b_l
c)
02c_l
d)
02d_l

Lösungsweg:

Nach einfacher algebraischen Umformung (Multiplikation mit -5/2) werden die beiden Summanden getrennt, so dass auf jeder Seite der Gleichung logarithmiert werden kann. Durch Logarithmieren mit dem Logarithmus zur Basis e (auch Logarithmus naturalis genannt), entsteht eine Gleichung mit der Variablen x, bei der x nicht mehr im Exponenten vorhanden ist. Die Lösung erhält man, indem die Gleichung nach der Variablen x umgeformt wird.

3.Lösen Sie die Gleichungen  Ausführliche Lösungen
a)
03a_l

b)
03b_l

c)
03c_l: Exponentialgleichung, Lösung durch logarithmieren

Lösungsweg:

Die Gleichung wird so umgeformt, dass auf jeder Seite nur Potenzen mit gleichen Basen stehen.

Potenzgesetz:
Potenzen mit gleichen Basen werden multipliziert, indem man die Exponenten addiert. Anwendung des Gesetzes führt dazu, dass es nur noch die Basen 2 und 3 mit dem Exponenten x gibt.

Potenzgesetz:
Potenzen mit ungleichen Basen aber gleichen Exponenten werden dividiert, indem man die Basen dividiert und den Exponenten beibehält.

Logarithmieren beider Seiten führt zum Ergebnis.

d)
03d_l
e)
03e_l

Lösungsweg:

Dezimalzahlen werden in Brüche verwandelt.

Potenzgesetz:
Potenzen mit gleichen Basen werden multipliziert, indem man die Exponenten addiert. Anwendung des Gesetzes führt dazu, dass die Potenz zur Basis 2 nur noch die Variable x im Exponenten hat.

Anwendung der Regel für negative Exponenten.

f)
03f_l



4.Für welche Werte von k hat die Gleichung eine Lösung? Ausführliche Lösungen
a)
04a_l
b)
04b_

c)
04c_l

Lösungsweg:

Die Potenzen zur Basis e werden auf unterschiedliche Seiten der Gleichung gebracht, damit die Gleichung logarithmierbar wird. Anwendung der Logarithmengesetze führt zu einer Gleichung in x.

5.Lösen Sie die Gleichungen  Ausführliche Lösungen
a)
05a_l
b)
05b_l
c)
05c_l
d)
05d_l
e)
05e_l
f)
05f_l

6.Lösen Sie die Gleichungen  Ausführliche Lösungen
a)
06a_l
b)
06b_l
c)
06c_l
d)
06d_l
e)
06e_l
f)
06f_l



7.Lösen Sie die Gleichungen  Ausführliche Lösungen
a)
07a_l
b)
07b_l
c)
07c_l
d)
07d_l

Lösungsweg:

Die Summanden werden getrennt. Die Bruchgleichung wird mit dem Nenner der rechten Seite multipliziert. So entsteht eine Gleichung ohne Brüche. Umformen und logarithmieren führt zum Ergebnis.

e)
07e_l
f)07f_l

Lösungsweg:

Zweifache Multiplikation mit dem Nenner der linken Seite lässt den Bruchterm verschwinden. Bei der algebraischen Umformung ist darauf zu achten, dass der Bruchstrich die Klammer ersetzt.

Ausmultiplizieren und weitere algebraische Umformungen führen zu einer Gleichung, die sich leicht logarithmieren lässt.

8.Lösen Sie die Gleichungen Ausführliche Lösungen 
a)

Lösungsweg:

Multiplikation mit dem Nenner der linken Seite lässt den Bruchterm verschwinden.

b)
08b_l 
c)
08c_l

Lösungsweg:

Die Definitionsmenge ist eingeschränkt, da der Nenner der linken Seite nicht Null werden darf.

Multiplikation mit dem Nenner der linken Seite lässt den Bruchterm verschwinden.

Algebraische Umformungen ermöglichen das Logarithmieren.

d)
08d_l 
e)
08e_l
f)
08f_l

Aufgaben hierzu

Theorie: Exponentialgleichungen

und Exponentialfunktionen und die e-Funktion

weitere Aufgaben: Exponentialgleichungen I

und Aufgaben Exponentialgleichungen II mit e-hoch-x

und Aufgaben Exponentialgleichungen III mit gebrochenem Exponenten

und Aufgaben Exponentialgleichungen IV mit e-Funktionen

und Aufgaben: Exponentialgleichungen VI mit Parametern

und Aufgaben Exponentialgleichungen VII mit Sachaufgaben



123mathe.de wird laufend erweitert. Weitere Inhalte auf der alten Webseite brinkmann-du.de.
Gefällt dir die Seite? Dann freuen wir uns über ein like auf facebook
Die Unterrichtsmaterialien gibt es in unserem Shop. Pakete mit vielen PDF-Datei ab 1 Euro und für Lehrer als WORD-Dateien.