Hier erkläre ich leicht verständlich die Zinseszinsrechnung. Mit Klick auf eine Zeile in der Inhaltsübersicht, gelangst du sofort zu der Stelle, die dich interessiert:
- Definition Zinseszinsrechnung
- Einführungsbeispiel
- Herleitung der Zinseszinsformel
- Endkapital berechnen
- Formelumstellung, Anfangskapital, Zinssatz und die Laufzeit berechnen
- Zusammenfassung alle Formeln
Definition Zinseszinsrechnung
Von Zinseszins spricht man, wenn die Zinsen wieder verzinst werden. In der Zinseszinsrechnung kann man mithilfe mathematischer Formeln das Anfangskapital, Endkapital, den Zinssatz oder die Laufzeit berechnen. Das werde ich anhand mehrerer Beispiele leicht verständlich erklären.
Meistens geht es um die Entwicklung von einmalig angelegten Kapitalbeträgen zu einem Zinssatz, der in der Regel im Zeitablauf fest bleibt. Zur Berechnung braucht man dann noch die Anzahl der Zinsgutschriften pro Jahr, die man Zinsturnus nennt. Ganz ohne einen Taschenrechner wird man also nicht auskommen, wenn man sich ein Bild davon machen möchte, wie sich das Guthaben im Laufe der Zeit entwickelt bzw. entwickeln kann.
Einführungsbeispiel:
Ein Immobilienmakler legt am Ende eines Jahres sein Weihnachtsgeld in Höhe von 4000 € auf ein Sparbuch mit 4-jähriger Kündigungsfrist. Das Kreditinstitut vereinbart mit ihm einen Zinssatz von 5%. Wie entwickelt sich das Sparguthaben? Wir rechnen die Jahre mal einzelnen.
Das Anfangskapital beträgt K(0) = 4000.
Am Ende des 1. Jahres hat sich das Kapital um die Zinsen des 1. Jahres erhöht. Die Formel kann man dann umstellen, in den nächsten Jahren wird dies deutlicher.
Herleitung der Zinseszinsformel:
K(0) = 4000 Anfangskapital K(1) = K(0) + K(0) · 0,05 K(1) = 4000 + 4000 · 0,05 K(1) = 4000 · (1 + 0,05)
Am Ende des 2. Jahres werden zu dem Kapital K(1) die Jahreszinsen des 2. Jahres addiert. K(2) = K(1) + K(1) · 0,05 K(2) = 4000 · 1,05 + 4000 · 1,05 · 0,05 K(2) = 4000 · 1,05 · (1 + 0,05) = 4000 · 1,05 v 1,05 K(2) = 4000 · 1,05^2
Am Ende des 3. Jahres werden wieder die Zinsen von 5% zu K(2) addiert.
K(3) = K(2) + K(2) · 0,05 K(3) = 4000 · 1,052 + 4000 · 1,052 · 0,05 K(3) = 4000 · 1,052 · (1 + 0,05) = 4000 · 1,052 · 1,05 K(3) = 4000 · 1,053
Das endgültige Guthaben am Ende des 4. Jahres ergibt sich aus der Summe von K(3) und den Zinsen von K(3).
Der Makler kann nach 4 Jahren über einen Betrag von 4862,03 € verfügen.
K(4) = K(3) + K(3) \cdot 0,05 K(4) = 4000 \cdot 1,05 ^3 + 4000 \cdot 1,05 ^3 \cdot 0,05 K(4) = 4000 \cdot 1,05 ^3 \cdot (1 + 0,05) = 4000 \cdot 1,05 ^3 \cdot 1,05 K(4) = 4000 \cdot 1,05^4 = \underline{\underline{4862,03}}
Allgemein gilt:
Nach n Jahren beträgt das Kapital somit:
K(n) = K(0) \cdot 1,05^n
Die Zinseszinsformel
Dazu brauchen wir:
K(0) : Anfangskapital
K(n) : Guthaben nach n Jahren
p : Zinssatz in %
q = (1 + \frac {p}{100\%}) : Zinsfaktor
Das Anfangskapital K(0) wächst in n- Jahren
bei einer Verzinsung von p%
auf das Endkapital K(n) an.
q ist dabei der Zinsfaktor, den man mithilfe von p sehr leicht berechnen kann.
K(n) = K(0) \cdot q^n \,\,\,\, mit\, q =(1 + \frac {p}{100\%})
Beispiel 1: Das Endkapital berechnen
Das Guthaben nach n Jahren wird berechnet.
Anfangskapital: K(0) = 10000 €
Zinssatz : p = 6,5%
Laufzeit : n = 18 Jahre
gesucht : Guthaben nach 18 Jahren
K(n) = K(0) \cdot q^n q =(1 + \frac {p}{100\%}) = 1 + \frac {6,5\%}{100\%} = 1,065 K(18) = 10000 \cdot 1,065^{18} = \underline{\underline{31066,54}} Antwort: Nach 18 Jahrenbeträgt das Guthaben: 31066,54 €
Eine Textaufgabe dazu habe ich in diesem Video Endkapital mit Zinseszins erklärt.
Wie bei der Zinsrechnung braucht man sich nur diese eine Formel zu merken, alle anderen kann man umstellen. Denn wenn man die Formel umstellt, kann man auch alle anderen Werte berechnen:
Beispiel 2 Das Anfangskapital berechnen
Für einen Autokauf sollen in 5 Jahren 20000 € zur Verfügung stehen. Welchen Betrag müsste man dafür jetzt zu 7% anlegen?
Wir stellen die Zinseszinsformel nach K(0) um:
Formelumstellung:
K(n) = K(0) \cdot q^n \,\,|:q^n \Leftrightarrow \frac {K(n)}{q^n} = K(0) \,\,\, mit \, q = 1 + \frac {p}{100\%}
Berechnung:
K(0) = \frac {K(n)}{q^n} n= 5 \,\,\,\,\,\,K(5) = 2000 \,\,\,\,\,\, q = 1 + \frac {7}{100\%} = 1,07 K(0)=\frac {20000}{1,07^5}=\underline{\underline{14259,72}}
Antwort:
Es muss ein Betrag von 14259,72 € für 5 Jahre zu 7% angelegt werden
Beispiel 3: Den Zinssatz berechnen
Zu welchem Zinssatz müssen 3325,29 € für 7 Jahre angelegt werden, damit am Ende des 7. Jahres 5000 € zur Verfügung stehen?
Wieder können wir die Zinsformel nach dem Zinssatz p umstellen:
K(n) = K(0) \cdot (1 + \frac {p}{100\%})^n \,\,\,\,|:K(0) \Leftrightarrow \frac {K(n)}{K(0)} = (1 + \frac {p}{100\%})^n\,\,\,\,|:\sqrt[n]{} \Leftrightarrow \sqrt[n]{\frac {K(n)}{K(0)}} = 1 + \frac {p}{100\%}\,\,\,\,|:-1 \Leftrightarrow \sqrt[n]{\frac {K(n)}{K(0)}} -1= \frac {p}{100\%}\,\,\,\,|:\cdot 100\% \underline{\underline {\Leftrightarrow 100\% \cdot (\sqrt[n]{\frac {K(n)}{K(0)}} -1) = p }}
Berechnung:
p = 100\% \cdot (\sqrt[n]{\frac {K(n)}{K(0)}} -1) n = 7 \,\,\,\,\,K(0) = 3325,29 \,\,\,\,\, K(7) = 5000 p = 100\% \cdot (\sqrt[7]{\frac {50000)}{3325,29}} -1) = \underline{\underline {6\%}}
Antwort:
Damit nach 7 Jahren aus dem Anfangskapital 5000 € werden, muss der Zinssatz p = 6% betragen
Beispiel 4: Die Laufzeit berechnen
Wie lange müssen 6808,24 € zu 6,5% angelegt werden, bis sie auf 12000 € gewachsen sind?
Wieder können wir die Zinsformel nach dem Zinssatz p umstellen:
K(n) = K(0) \cdot q^n \,\,\,\,\, | : K(0) \Leftrightarrow \frac {K(n)}{K(0)} = q^n \,\,\,\,\, | : logarithmieren \Leftrightarrow lg \frac {K(n)}{K(0)} = lg \, q^n = n \cdot lg \, q \,\,\,\,\, | : lg \,q \Leftrightarrow \underline{\underline{ \frac {lg \frac {K(n)}{K(0)}} { lg \, q }}}= n
Berechnung:
n = \frac {lg \frac {K(n)}{K(0)}} { lg \, q } K(0) = 6808,24 \,\,\,\,K(n)=12000\,\,\,\,q = 1+ \frac{6,5}{100\%} = 1,065 n = \frac {lg \, \frac{12000}{6808,24}}{lg \,1,065} = 9
Antwort:
Um auf 12000 € anzuwachsen müssen 6808,24 € zu 6,5% 9 Jahre angelegt werden.
Zusammenfassung alle Formeln
K(n) ist das n Jahre lang zu einem Zinssatz von p% verzinste Anfangskapital K(0) und lässt sich nach der Zinseszinsformel
K(n) = K(0) \cdot q^n \,\,\,\, mit\, q =(1 + \frac {p}{100\%})
berechnen.
Durch entsprechende Formelumstellungen lässt sich auch das Anfangskapital, die Laufzeit und der Zinssatz berechnen.
Anfangskapital berechnen:
K(0) = \frac {K(n)}{q^n}
Laufzeit berechnen:
n = \frac {lg \frac {K(n)}{K(0)}} { lg \, q }
Zinssatz berechnen:
p = 100\% \cdot (\sqrt[n]{\frac {K(n)}{K(0)}} -1)
Hier findest du die Aufgaben hierzu: Zinseszinsrechnung Aufgaben I.
Und hier Zinseszinsrechnung Aufgaben II.
Hier eine Übersicht über alle Beiträge zum Thema Zinsrechnung darin auch Links zu weiteren Beiträgen und Videos.
Und hier zu anderen mathematischen Grundlagen. darin auch Links zu weiteren Beiträgen.